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Quantum transport characteristic of a mesoscopic systems under the 
effect of Coulomb blocked and magnetic field are studied. This system is 
modeled as two semiconductor quantum dots which are coupled to a 
superconducting lead via quantum point contacts. The Josephson current 
density has been obtained in terms of the Andreev reflection amplitude. This 
Andreev reflection amplitude was deduced by solving the Bogoliubov – de 
Gennes (BdG) equation, describing the electron transport through the present 
studied junction. Numerical calculation of the obtained current density has 
been performed. The dependence of the current density on phase angle φ shows 
a periodic variation. While the oscillation features of the current density with 
the magnetic field are predicted to be due to quantum interference of electron 
waves. So such junction can be operated as a quantum interference tuner which 
may be valuable for nanotechnology.  
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Introduction: 

 In recent years, the ballistic transport phenomena in mesoscopic 
systems have received a great deal of attention. With device dimensions smaller 
than the electron phase coherence length as well as the elastic mean free path, 
the scattering and propagation of electrons are described by phase – coherent 
wave function.  
  

The electronic stub tuner, a quantum interference device, has been 
studied by many authors (1-9). A conductance oscillations were observed The 
results were explained as the quantum interference of electronic waves 
propagating along the wire and the stub.  
 
 In the present paper, a model was proposed as two semiconductor 
quantum dots coupled to a superconducting lead via quantum point contacts. 
The quantum transport characteristics of this model are studied under the effect 
of coulomb blockade and a magnetic field. The present device has not been 
studied previously.  
 
Theoretical Treatment and the Model  

 In this model we shall study the transport properties of a quantum 
interface device, i.e. the electronic stub tuner under the effect of the magnetic 
field, B,. This model is schematically represented in Fig. (1) as the S-Sm-S-Sm-
S (S-superconductor, Sm-semiconductor ). The dc Josephson current is 
calculated by solving the Bogoluibov-de Gennes equation (BdG) [10]. 
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The pair potential ∆ in this case is given by  
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where ∆0 is the energy gap of the superconductor, φ is the phase difference of 
the Cooper pair and L is the distance between the two successive 
superconducting reservoir’s. The Hamiltonian, H for this model is expressed as  
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Fig.(1) Schematic representation of a S-Sm-S-Sm-S junction with step wise pair 
potential. 
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In Eq.(3), b ,is the width of the semiconductor stub. 
  

There are two kinds of bound states, according to the processes that set 
up the bound states. The first, called the p-process [11], is constructed from 
eigenstates having superscript (+), which is associated with right going 
electronlike quasiparticles in the semiconductor regions. The second called  
n-process, is constructed from eigenstates having superscript (-) and is 
associated with right-going holelike quasiparticles in the semiconductor regions. 
Now, accordingly, the p-process eigenfunction is given by[12] 
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The subscript e (h) indicates the electronlike (holelike)quasiparticle. u0 and v0 in 
Eq.(4) is given by Eq 
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 The n-process eigenfunction can be obtained from Eq.(4) by changing 
the superscript (+) to (-) and the subscript (e,h) to (h,e). In Eq.(4) normalized 
eigenfunctions in the semiconductor regions are expressed as  
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Whereσ e =1 for electronlike quasiparticle, σh = −1 for holelike quasiparticle. 
 
and the normalized eigenfunctions in the superconductor regions are given by  
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where ke,h is given by   
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The current density,J, due to the Andreev levels can be calculated by using the 
following Eq.[13] 
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where Γp n a E/ ( , )= α αϕ 2
 is the Andreev scattering probability, and α = +1  

(-1) refers to the p-process and (n-process), and fFD is the Fermi-Dirac 
distribution function.  
 
 The Andreev scattering probability for both, p-process and n-process 
are obtained after matching the eigenfunctions (Eq.(6a,b , 8a,b) at all S-Sm 
interfaces, we get 
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Substituting Eq. (12,13) in Eq.(11)  
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The Josephson current density, J,equation (14) dependes on the 
following parametres: 
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1-  the phase difference φ of the Cooper pair,   
2-  the width of the semiconductor quantum dot, b, 
3-  the distance, L, between the two superconducting reservoirs,  
4-  the gate voltage,Vg , 

5-  the energy gap of the superconductor, ∆0 , 
6-  the magnetic field, B, 
7-  the Schottky barrier height, S, 
8-  the Coulomb energy, UC, for the number of the electrons (N+1) and N in the 

quantum dot, 
 
 These above mentioned parameters can be varied and controlled in 
order to fabricate the desired junction for optimum utility in microelectronics 
technology. 
 
Numerical Calculation and Results: 

 In order to show the reliability of the present theoretical treatment for 
the present model of superconductor-semiconductor junction, we have 
performed a numerical calculation. The electron transport through the junction 
is treated as a stochastic process, so that the tunneled electron energy as a 
random number. Also, the Schottky barrier height, S, is determined by using the 
Monte-Carlo simulation technique and its value was found to be ~ 0.47 eV for 
the case Nb-GaAs Nb-GaAs based heterostructure interface. This value of, S 
was found in agreement with those found experimentally [14] and by us [ 15-
18]. Also, the number of electrons in the quantum dot is computed by using the 
Monte-Carlo simulation technique.  
 
1. The variation of the current density, J, with temperature (Fig.2) shows that 

the decreases of the current as the temperature increases. This result show a 
qualitative agreement with those published in the literature [19-21] 

2. Fig.s (3) show the variation of the current density, J, with, L, for different 
values of, φ, T, B. Also Fig.s (4) show the variation of, J, with, b, under 
different values of φ, T, B. It may be noted that the current density, J, 
becomes approximately constant where, L, attains a value ~ 80 nm. This 
value was found to be equal to Fermi wavelength λF, for mesoscopic system 
[22]. But for the case of, b, the current density, J, becomes constant when,b, 
attains a value ~ 10 nm. This value does not change as the temperature 
varies. However, the value of, J, does not change when the values of φ , and 
B, vary. 
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Fig.(2) The current density as a function of temperature relation for different  Values of 
φ  (I),L(II),  and B(III).  

Fig.(3) The current density as a  function of length of the semiconductor quantum  dot 
relation for different values of  ϕ  (I), T(II),and B(III). 
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Fig.(4) The current density as a function of the width of the semiconductor 

quantum  dot relation for different values of  ϕ (I), T(II), and B(III). 
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3. A periodic variation of, J, with φ is shown in Fig.(5). This result was 
observed by another authors [13,23] previously which shows the coherent 
property of the system and it is in a clean limit. 

4. The variation of the current density, J, with the magnetic field, B, (Fig.6) 
show a resonance behavior at the same values of the magnetic field, B.  
The oscillatory behavior was observed previously [9,24] and this is due to 
quantum   interference of electron under the effect of the magnetic field B. 

 
Fig.(5) The variation of the current density with phase angle. 
Fig.(6) The variation of current density as a function of magnetic field. 

 

Conclusion:   

              In this paper we derived a josephson current density for the proposed 
device in terms of the Andreev reflection amplitude. The oscillatory behavior of 
the current density with the magnetic field is explained as the quantum 
interference of electron waves. We can conclude that such mesoscopic structure 
used as quantum devices, are predicted to be operational at very high 
frequencies.   
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